If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-14t-98=0
a = 4.9; b = -14; c = -98;
Δ = b2-4ac
Δ = -142-4·4.9·(-98)
Δ = 2116.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-\sqrt{2116.8}}{2*4.9}=\frac{14-\sqrt{2116.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+\sqrt{2116.8}}{2*4.9}=\frac{14+\sqrt{2116.8}}{9.8} $
| 7/3x+3=1/3=1/3x | | 0=30t-18t^2 | | 600=2f+500 | | -1/3v-3/2=-3/5 | | x/6-1.4=20.6 | | 5(-4+x)-4=3x+16 | | 5s+8(887-s)=5464 | | (210-3x)-(x+20)-(x)=180 | | 17+5x=-13 | | 11x-7=10x-7 | | 11(x)-37=7(x)+27 | | 3/y+6/y-1/y=11 | | 34-w=185 | | 48+(5x-17)+x=180 | | -1=-3x+9 | | 4(x+2)=6×+10 | | 7=-4x-4 | | 8=5x+8 | | 4b-1/3=5/6 | | -9=5x+7 | | -3x+6=1 | | 8s=72/23 | | W+8+3w=6+10w | | 5(4x+2)-3(x+1)=14 | | -6w+1/3=-1/2w-5/6 | | 3(4x+13)-5(2x+3)=2x+24 | | 3(4x+14)-5(2x+3)=2x+24 | | (25x/4)-(5/3)=76 | | 13-(2y-1)=2(y-1)+4 | | 4x-4=4/5(5x+4) | | (y+3)/(2y+3)=0.6 | | Q-(2q+1)=8-(3q+3) |